GluR6/KA2 kainate receptors mediate slow-deactivating currents.

نویسندگان

  • Andrea Barberis
  • Shankar Sachidhanandam
  • Christophe Mulle
چکیده

Kainate receptors (KARs) are ionotropic glutamate receptors contributing to EPSCs with a slow-decaying component that is likely essential for synaptic integration. The slow kinetics of KAR-EPSCs markedly contrasts with the fast kinetics reported for recombinant KARs expressed in heterologous systems, for reasons that remain unexplained. Here we have studied the properties of recombinant heteromeric GluR6/KA2 receptors, which compose synaptic KARs. We report that, in response to brief glutamate applications, currents mediated by recombinant GluR6/KA2 receptors, but not GluR6 receptors, decay with a time course similar to KAR-EPSCs. Model simulations suggest that, after brief agonist exposures, GluR6/KA2 currents undergo slow deactivation caused by the stabilization of partially bound open states. We propose, therefore, that the GluR6/KA2 gating features could contribute to the slow KAR-EPSC decay kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute effects of ethanol on kainate receptors with different subunit compositions.

Previous studies showed that recombinant homomeric GluR6 receptors are acutely inhibited by ethanol. This study examined the acute actions of ethanol on recombinant homomeric and heteromeric kainate (KA) receptors with different subunit configurations. Application of 25 to 100 mM ethanol produced inhibition of a similar magnitude of both GluR5-Q and GluR6-R KA receptor-dependent currents in Xen...

متن کامل

Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses.

Heteromeric kainate receptors (KARs) containing both glutamate receptor 6 (GluR6) and KA2 subunits are involved in KAR-mediated EPSCs at mossy fiber synapses in CA3 pyramidal cells. We report that endogenous glutamate, by activating KARs, reversibly inhibits the slow Ca2+-activated K+ current I(sAHP) and increases neuronal excitability through a G-protein-coupled mechanism. Using KAR knockout m...

متن کامل

Distribution of kainate receptor subunits at hippocampal mossy fiber synapses.

Kainate receptors function as mediators of postsynaptic currents and as presynaptic modulators of synaptic transmission at mossy fiber synapses. Despite intense research into the physiological properties of mossy fiber kainate receptors, their subunit composition in the presynaptic and postsynaptic compartments is unclear. Here we describe the distribution of kainate receptor subunits in mossy ...

متن کامل

SAP90 Binds and Clusters Kainate Receptors Causing Incomplete Desensitization

The mechanism of kainate receptor targeting and clustering is still unresolved. Here, we demonstrate that members of the SAP90/PSD-95 family colocalize and associate with kainate receptors. SAP90 and SAP102 coimmunoprecipitate with both KA2 and GluR6, but only SAP97 coimmunoprecipitates with GluR6. Similar to NMDA receptors, GluR6 clustering is mediated by the interaction of its C-terminal amin...

متن کامل

Identification of an endoplasmic reticulum-retention motif in an intracellular loop of the kainate receptor subunit KA2.

Neuronal kainate receptors are typically heteromeric complexes composed of GluR5-7 and KA1-2 subunits. Although GluR5-7 can exist as functional homomeric channels, the KA subunits cannot. KA2 is widely expressed in the CNS, and KA2/GluR6 heteromers are the most prevalent subunit composition in brain. Previous work has identified endoplasmic reticulum (ER)-retention motifs in the C terminus of K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 25  شماره 

صفحات  -

تاریخ انتشار 2008